Selecting a scale for spatial confounding adjustment
Joshua P. Keller and
Adam A. Szpiro
Journal of the Royal Statistical Society Series A, 2020, vol. 183, issue 3, 1121-1143
Abstract:
Unmeasured, spatially structured factors can confound associations between spatial environmental exposures and health outcomes. Adding flexible splines to a regression model is a simple approach for spatial confounding adjustment, but the spline degrees of freedom do not provide an easily interpretable spatial scale. We describe a method for quantifying the extent of spatial confounding adjustment in terms of the Euclidean distance at which variation is removed. We develop this approach for confounding adjustment with splines and using Fourier and wavelet filtering. We demonstrate differences in the spatial scales that these bases can represent and provide a comparison of methods for selecting the amount of confounding adjustment. We find the best performance for selecting the amount of adjustment by using an information criterion evaluated on an outcome model without exposure. We apply this method to spatial adjustment in an analysis of fine particulate matter and blood pressure in a cohort of US women.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12556
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:183:y:2020:i:3:p:1121-1143
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().