Multiple‐systems analysis for the quantification of modern slavery: classical and Bayesian approaches
Bernard W. Silverman
Journal of the Royal Statistical Society Series A, 2020, vol. 183, issue 3, 691-736
Abstract:
Multiple‐systems estimation is a key approach for quantifying hidden populations such as the number of victims of modern slavery. The UK Government published an estimate of 10000–13000 victims, constructed by the present author, as part of the strategy leading to the Modern Slavery Act 2015. This estimate was obtained by a stepwise multiple‐systems method based on six lists. Further investigation shows that a small proportion of the possible models give rather different answers, and that other model fitting approaches may choose one of these. Three data sets collected in the field of modern slavery, together with a data set about the death toll in the Kosovo conflict, are used to investigate the stability and robustness of various multiple‐systems‐estimate methods. The crucial aspect is the way that interactions between lists are modelled, because these can substantially affect the results. Model selection and Bayesian approaches are considered in detail, in particular to assess their stability and robustness when applied to real modern slavery data. A new Markov chain Monte Carlo Bayesian approach is developed; overall, this gives robust and stable results at least for the examples considered. The software and data sets are freely and publicly available to facilitate wider implementation and further research.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/rssa.12505
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:183:y:2020:i:3:p:691-736
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().