Health effects of power plant emissions through ambient air quality
Chanmin Kim,
Lucas R. F. Henneman,
Christine Choirat and
Corwin M. Zigler
Journal of the Royal Statistical Society Series A, 2020, vol. 183, issue 4, 1677-1703
Abstract:
Coal burning power plants are a frequent target of regulatory programmes because of their emission of chemicals that are known precursors to the formation of ambient particulate air pollution. Health impact assessments of emissions from coal power plants typically rely on assumed causal relationships between emissions, ambient pollution and health, many of which have never been empirically verified. We offer a novel statistical evaluation of some of these presumed causal relationships, integrating the formality of causal inference methods with repurposed tools from atmospheric science to accommodate the central challenge of long‐range pollution transport of emissions from power plants to exposed populations. The statistical approach follows recent work on Bayesian methods for deploying principal stratification and causal mediation analysis in tandem to characterize the extent to which decreased sulphur dioxide emissions from 410 power plants across the USA impact mortality and hospitalization outcomes across Medicare beneficiaries residing across 12370 locations in a manner that is mediated through reductions of ambient fine particulate pollution. The result is the first epidemiological investigation integrating causal inference methodology with direct measurements of coal emissions, pollution transport, ambient pollution and human health in a single analysis, indicating the potential for data science at the intersection of statistics, epidemiology and atmospheric science.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/rssa.12547
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:183:y:2020:i:4:p:1677-1703
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().