Specification and testing of hierarchical ordered response models with anchoring vignettes
William H. Greene,
Mark Harris,
Rachel J. Knott and
Nigel Rice
Journal of the Royal Statistical Society Series A, 2021, vol. 184, issue 1, 31-64
Abstract:
Collection and analysis of self‐reported information on an ordered Likert scale is ubiquitous across the social sciences. Inference from such analyses is valid where the response scale employed means the same thing to all individuals. That is, if there is no differential item functioning (DIF) present in the data. A priori this is unlikely to hold across all individuals and cohorts in any sample of data. For this reason, anchoring vignettes have been proposed as a way to correct for DIF when individuals self‐assess their health (or well‐being, or satisfaction levels, or disability levels, etc.) on an ordered categorical scale. Using an example of self‐assessed pain, we illustrate the use of vignettes to adjust for DIF using the compound hierarchical ordered probit model (CHOPIT). The validity of this approach relies on the two underlying assumptions of response consistency (RC) and vignette equivalence (VE). Using a minor amendment to the specification of the standard CHOPIT model, we develop easy‐to‐implement score tests of the null hypothesis of RC and VE both separately and jointly. Monte Carlo simulations show that the tests have good size and power properties in finite samples. We illustrate the use of the tests by applying them to our empirical example. The tests should aid more robust analyses of self‐reported survey outcomes collected alongside anchoring vignettes.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12612
Related works:
Working Paper: Specification and testing of hierarchical ordered response models with anchoring vignettes (2019) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:184:y:2021:i:1:p:31-64
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().