A dynamic factor model approach to incorporate Big Data in state space models for official statistics
Caterina Schiavoni,
Franz Palm,
Stephan Smeekes and
Jan van den Brakel
Journal of the Royal Statistical Society Series A, 2021, vol. 184, issue 1, 324-353
Abstract:
In this paper we consider estimation of unobserved components in state space models using a dynamic factor approach to incorporate auxiliary information from high‐dimensional data sources. We apply the methodology to unemployment estimation as done by Statistics Netherlands, who uses a multivariate state space model to produce monthly figures for unemployment using series observed with the labour force survey (LFS). We extend the model by including auxiliary series of Google Trends about job‐search and economic uncertainty, and claimant counts, partially observed at higher frequencies. Our factor model allows for nowcasting the variable of interest, providing reliable unemployment estimates in real‐time before LFS data become available.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/rssa.12626
Related works:
Working Paper: A dynamic factor model approach to incorporate Big Data in state space models for official statistics (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:184:y:2021:i:1:p:324-353
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().