Linearization and variance estimation of the Bonferroni inequality index
Ziqing Dong,
Yves Tillé,
Giovanni M. Giorgi and
Alessio Guandalini
Journal of the Royal Statistical Society Series A, 2021, vol. 184, issue 3, 1008-1029
Abstract:
The study of income inequality is important for predicting the wealth of a country. There is an increasing number of publications where the authors call for the use of several indices simultaneously to better account for the wealth distribution. Due to the fact that income data are usually collected through sample surveys, the sampling properties of income inequality measures should not be overlooked. The most widely used inequality measure is the Gini index, and its inferential aspects have been deeply investigated. An alternative inequality index could be the Bonferroni inequality index, although less attention on its inference has been paid in the literature. The aim of this paper is to address the inference of the Bonferroni index in a finite population framework. The Bonferroni index is linearized by differentiation with respect to the sample indicators which allows for conducting a valid inference. Furthermore, the linearized variables are used to evaluate the effects of the different observations on the Bonferroni and Gini indices. The result demonstrates once for all that the former is more sensitive to the lowest incomes in the distribution than the latter.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/rssa.12701
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:184:y:2021:i:3:p:1008-1029
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().