Removing the influence of group variables in high‐dimensional predictive modelling
Emanuele Aliverti,
Kristian Lum,
James E. Johndrow and
David B. Dunson
Journal of the Royal Statistical Society Series A, 2021, vol. 184, issue 3, 791-811
Abstract:
In many application areas, predictive models are used to support or make important decisions. There is increasing awareness that these models may contain spurious or otherwise undesirable correlations. Such correlations may arise from a variety of sources, including batch effects, systematic measurement errors or sampling bias. Without explicit adjustment, machine learning algorithms trained using these data can produce out‐of‐sample predictions which propagate these undesirable correlations. We propose a method to pre‐process the training data, producing an adjusted dataset that is statistically independent of the nuisance variables with minimum information loss. We develop a conceptually simple approach for creating an adjusted dataset in high‐dimensional settings based on a constrained form of matrix decomposition. The resulting dataset can then be used in any predictive algorithm with the guarantee that predictions will be statistically independent of the nuisance variables. We develop a scalable algorithm for implementing the method, along with theory support in the form of independence guarantees and optimality. The method is illustrated on some simulation examples and applied to two case studies: removing machine‐specific correlations from brain scan data, and removing ethnicity information from a dataset used to predict recidivism. That the motivation for removing undesirable correlations is quite different in the two applications illustrates the broad applicability of our approach.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12613
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:184:y:2021:i:3:p:791-811
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().