Comparing the real‐world performance of exponential‐family random graph models and latent order logistic models for social network analysis
Duncan A. Clark and
Mark S. Handcock
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue 2, 566-587
Abstract:
Exponential‐family random graph models (ERGMs) are widely used in social network analysis when modelling data on the relations between actors. ERGMs are typically interpreted as a snapshot of a network at a given point in time or in a final state. The recently proposed Latent Order Logistic model (LOLOG) directly allows for a latent network formation process. We assess the real‐world performance of these models when applied to typical networks modelled by researchers. Specifically, we model data from an ensemble of articles in the journal Social Networks with published ERGM fits, and compare the ERGM fit to a comparable LOLOG fit. We demonstrate that the LOLOG models are, in general, in qualitative agreement with the ERGM models, and provide at least as good a model fit. In addition, they are typically faster and easier to fit to data, without the tendency for degeneracy that plagues ERGMs. Our results support the general use of LOLOG models in circumstances where ERGMs are considered.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12788
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:2:p:566-587
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().