EconPapers    
Economics at your fingertips  
 

A multidimensional pairwise comparison model for heterogeneous perceptions with an application to modelling the perceived truthfulness of public statements on COVID‐19

Qiushi Yu and Kevin M. Quinn

Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue 3, 1049-1073

Abstract: Pairwise comparison models are an important type of latent attribute measurement model with broad applications in the social and behavioural sciences. Current pairwise comparison models are typically unidimensional. The existing multidimensional pairwise comparison models tend to be difficult to interpret and they are unable to identify groups of raters that share the same rater‐specific parameters. To fill this gap, we propose a new multidimensional pairwise comparison model with enhanced interpretability which explicitly models how object attributes on different dimensions are differentially perceived by raters. Moreover, we add a Dirichlet process prior on rater‐specific parameters which allows us to flexibly cluster raters into groups with similar perceptual orientations. We conduct simulation studies to show that the new model is able to recover the true latent variable values from the observed binary choice data. We use the new model to analyse original survey data regarding the perceived truthfulness of statements on COVID‐19 collected in the summer of 2020. By leveraging the strengths of the new model, we find that the partisanship of the speaker and the partisanship of the respondent account for the majority of the variation in perceived truthfulness, with statements made by co‐partisans being viewed as more truthful.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/rssa.12810

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:3:p:1049-1073

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X

Access Statistics for this article

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssa:v:185:y:2022:i:3:p:1049-1073