Secure big data collection and processing: Framework, means and opportunities
Li‐Chun Zhang and
Gustav Haraldsen
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue 4, 1541-1559
Abstract:
Statistical disclosure control is important for the dissemination of statistical outputs. There is an increasing need for greater confidentiality protection during data collection and processing by National Statistical Offices. In particular, various transactions and remote sensing signals are examples of useful but very detailed big data that can be highly sensitive. Moreover, possible conflicts of interest may arise for data suppliers who operate commercially. In this paper, we formulate statistical disclosure control for data collection and processing as an optimisation problem. Even when it is difficult to specify and solve the problem unequivocally, the formulation can still provide the basis for comparing different disclosure control methods. We develop a general compartmented system that adapts and implements non‐perturbative methods in the related fields of linking sensitive data and secure computation. We illustrate how the system can be configured to yield variously required tables and microdata sets with sufficiently low disclosure risks.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12836
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:4:p:1541-1559
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().