Nearest neighbour ratio imputation with incomplete multinomial outcome in survey sampling
Chenyin Gao,
Katherine Jenny Thompson,
Jae Kwang Kim and
Shu Yang
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue 4, 1903-1930
Abstract:
Nonresponse is a common problem in survey sampling. Appropriate treatment can be challenging, especially when dealing with detailed breakdowns of totals. Often, the nearest neighbour imputation method is used to handle such incomplete multinomial data. In this article, we investigate the nearest neighbour ratio imputation (NNRI) estimator, in which auxiliary variables are used to identify the closest donor and the vector of proportions from the donor is applied to the total of the recipient to implement ratio imputation. To estimate the asymptotic variance, we first treat the NNRI as a special case of predictive matching imputation and build on earlier work to linearize the imputed estimate. To account for the non‐negligible sampling fractions, parametric and generalized additive models are employed to incorporate the smoothness of the imputation estimator, which results in a valid variance estimator. We apply the proposed method to estimate expenditures detail items based on empirical data from the 2018 collection of the Service Annual Survey, conducted by the United States Census Bureau. Our simulation results demonstrate the validity of our proposed estimators and also confirm that the derived variance estimators have good performance even when the sampling fraction is non‐negligible.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12841
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:4:p:1903-1930
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().