Temporal and spatial Taylor's law: Application to Japanese subnational mortality rates
Yang Yang,
Han Lin Shang and
Joel E. Cohen
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue 4, 1979-2006
Abstract:
Taylor's law is a widely observed empirical pattern that relates the variances to the means of population densities. We present four extensions of the classical Taylor's law (TL): (1) a cubic extension of the linear TL describes the mean–variance relationship of human mortality at subnational levels well; (2) in a time series, long‐run variance measures not only variance but also autocovariance, and it is a more suitable measure than variance alone to capture temporal/spatial correlation; (3) an extension of the classical equally weighted spatial variance takes account of synchrony and proximity; (4) robust linear regression estimators of TL parameters reduce vulnerability to outliers. Applying the proposed methods to age‐specific Japanese subnational death rates from 1975 to 2018, we study temporal and spatial variations, compare different coefficient estimators, and interpret the implications. We apply a clustering algorithm to the estimated TL coefficients and find that cluster memberships are strongly related to prefectural gross domestic product. The time series of spatial TL coefficients has a decreasing trend that confirms the narrowing gap between rural and urban mortality in Japan.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12859
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:4:p:1979-2006
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().