Estimation of reproduction numbers in real time: Conceptual and statistical challenges
Lorenzo Pellis,
Paul J. Birrell,
Joshua Blake,
Christopher E. Overton,
Francesca Scarabel,
Helena B. Stage,
Ellen Brooks‐Pollock,
Leon Danon,
Ian Hall,
Thomas A. House,
Matt J. Keeling,
Jonathan M. Read,
Consortium Juniper and
Daniela De Angelis
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue S1, S112-S130
Abstract:
The reproduction number R$$ R $$ has been a central metric of the COVID‐19 pandemic response, published weekly by the UK government and regularly reported in the media. Here, we provide a formal definition and discuss the advantages and most common misconceptions around this quantity. We consider the intuition behind different formulations of R$$ R $$, the complexities in its estimation (including the unavoidable lags involved), and its value compared to other indicators (e.g. the growth rate) that can be directly observed from aggregate surveillance data and react more promptly to changes in epidemic trend. As models become more sophisticated, with age and/or spatial structure, formulating R$$ R $$ becomes increasingly complicated and inevitably model‐dependent. We present some models currently used in the UK pandemic response as examples. Ultimately, limitations in the available data streams, data quality and time constraints force pragmatic choices to be made on a quantity that is an average across time, space, social structure and settings. Effectively communicating these challenges is important but often difficult in an emergency.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssa.12955
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:s1:p:s112-s130
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().