Understanding political news media consumption with digital trace data and natural language processing
Ruben L. Bach,
Christoph Kern,
Denis Bonnay and
Luc Kalaora
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue S2, S246-S269
Abstract:
Augmenting survey data with digital traces is a promising direction for combining the advantages of active and passive data collection. However, extracting interpretable measurements from digital traces for social science research is challenging. In this study, we demonstrate how to obtain measurements of news media consumption from survey respondents' web browsing data using Bidirectional Encoder Representations from Transformers, a powerful natural language processing algorithm that estimates contextual word embeddings from text data. Our approach is particularly relevant for political scientists and communication researchers studying exposure to online news content but can easily be adapted to projects in other disciplines working with similar data sets.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/rssa.12846
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s246-s269
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().