Analysing establishment survey non‐response using administrative data and machine learning
Benjamin Küfner,
Joseph W. Sakshaug and
Stefan Zins
Journal of the Royal Statistical Society Series A, 2022, vol. 185, issue S2, S310-S342
Abstract:
Declining participation in voluntary establishment surveys poses a risk of increasing non‐response bias over time. In this paper, response rates and non‐response bias are examined for the 2010–2019 IAB Job Vacancy Survey. Using comprehensive administrative data, we formulate and test several theory‐driven hypotheses on survey participation and evaluate the potential of various machine learning algorithms for non‐response bias adjustment. The analysis revealed that while the response rate decreased during the decade, no concomitant increase in aggregate non‐response bias was observed. Several hypotheses of participation were at least partially supported. Lastly, the expanded use of administrative data reduced non‐response bias over the standard weighting variables, but only limited evidence was found for further non‐response bias reduction through the use of machine learning methods.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/rssa.12942
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:185:y:2022:i:s2:p:s310-s342
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().