Parameter Orthogonality in Mixed Regression Models for Survival Data
J. L. Hutton and
P. J. Solomon
Journal of the Royal Statistical Society Series B, 1997, vol. 59, issue 1, 125-136
Abstract:
The implications of parameter orthogonality for the robustness of survival regression models are considered. The question of which of the proportional hazards or the accelerated life families of models would be more appropriate for analysis is usually ignored, and the proportional hazards family is applied, particularly in medicine, for convenience. Accelerated life models have conventionally been used in reliability applications. We propose a one‐parameter family mixture survival model which includes both the accelerated life and the proportional hazards models. By orthogonalizing relative to the mixture parameter, we can show that, for small effects of the covariates, the regression parameters under the alternative families agree to within a constant. This recovers a known misspecification result. We use notions of parameter orthogonality to explore robustness to other types of misspecification including misspecified base‐line hazards. The results hold in the presence of censoring. We also study the important question of when proportionality matters.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00058
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:59:y:1997:i:1:p:125-136
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().