Latent Variable Models for Mixed Discrete and Continuous Outcomes
Mary Dupuis Sammel,
Louise M. Ryan and
Julie M. Legler
Journal of the Royal Statistical Society Series B, 1997, vol. 59, issue 3, 667-678
Abstract:
We propose a latent variable model for mixed discrete and continuous outcomes. The model accommodates any mixture of outcomes from an exponential family and allows for arbitrary covariate effects, as well as direct modelling of covariates on the latent variable. An EM algorithm is proposed for parameter estimation and estimates of the latent variables are produced as a by‐product of the analysis. A generalized likelihood ratio test can be used to test the significance of covariates affecting the latent outcomes. This method is applied to birth defects data, where the outcomes of interest are continuous measures of size and binary indicators of minor physical anomalies. Infants who were exposed in utero to anticonvulsant medications are compared with controls.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00090
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:59:y:1997:i:3:p:667-678
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().