EconPapers    
Economics at your fingertips  
 

Optimal scaling of discrete approximations to Langevin diffusions

Gareth O. Roberts and Jeffrey S. Rosenthal

Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 1, 255-268

Abstract: We consider the optimal scaling problem for proposal distributions in Hastings–Metropolis algorithms derived from Langevin diffusions. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterized by its overall acceptance rate, independently of the target distribution. The asymptotically optimal acceptance rate is 0.574. We show that, as a function of dimension n, the complexity of the algorithm is O(n1/3), which compares favourably with the O(n) complexity of random walk Metropolis algorithms. We illustrate this comparison with some example simulations.

Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00123

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:1:p:255-268

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:60:y:1998:i:1:p:255-268