Optimal scaling of discrete approximations to Langevin diffusions
Gareth O. Roberts and
Jeffrey S. Rosenthal
Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 1, 255-268
Abstract:
We consider the optimal scaling problem for proposal distributions in Hastings–Metropolis algorithms derived from Langevin diffusions. We prove an asymptotic diffusion limit theorem and show that the relative efficiency of the algorithm can be characterized by its overall acceptance rate, independently of the target distribution. The asymptotically optimal acceptance rate is 0.574. We show that, as a function of dimension n, the complexity of the algorithm is O(n1/3), which compares favourably with the O(n) complexity of random walk Metropolis algorithms. We illustrate this comparison with some example simulations.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (47)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00123
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:1:p:255-268
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().