Some algebra and geometry for hierarchical models, applied to diagnostics
J. S. Hodges
Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 3, 497-536
Abstract:
Recent advances in computing make it practical to use complex hierarchical models. However, the complexity makes it difficult to see how features of the data determine the fitted model. This paper describes an approach to diagnostics for hierarchical models, specifically linear hierarchical models with additive normal or t‐errors. The key is to express hierarchical models in the form of ordinary linear models by adding artificial `cases' to the data set corresponding to the higher levels of the hierarchy. The error term of this linear model is not homoscedastic, but its covariance structure is much simpler than that usually used in variance component or random effects models. The re‐expression has several advantages. First, it is extremely general, covering dynamic linear models, random effect and mixed effect models, and pairwise difference models, among others. Second, it makes more explicit the geometry of hierarchical models, by analogy with the geometry of linear models. Third, the analogy with linear models provides a rich source of ideas for diagnostics for all the parts of hierarchical models. This paper gives diagnostics to examine candidate added variables, transformations, collinearity, case influence and residuals.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00137
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:3:p:497-536
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().