A note on the unification of the Akaike information criterion
P. Shi and
C‐L. Tsai
Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 3, 551-558
Abstract:
To measure the distance between a robust function evaluated under the true regression model and under a fitted model, we propose generalized Kullback–Leibler information. Using this generalization we have developed three robust model selection criteria, AICR*, AICCR* and AICCR, that allow the selection of candidate models that not only fit the majority of the data but also take into account non‐normally distributed errors. The AICR* and AICCR criteria can unify most existing Akaike information criteria; three examples of such unification are given. Simulation studies are presented to illustrate the relative performance of each criterion.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00139
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:3:p:551-558
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().