Multivariate Bayesian variable selection and prediction
P. J. Brown,
M. Vannucci and
T. Fearn
Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 3, 627-641
Abstract:
The multivariate regression model is considered with p regressors. A latent vector with p binary entries serves to identify one of two types of regression coefficients: those close to 0 and those not. Specializing our general distributional setting to the linear model with Gaussian errors and using natural conjugate prior distributions, we derive the marginal posterior distribution of the binary latent vector. Fast algorithms aid its direct computation, and in high dimensions these are supplemented by a Markov chain Monte Carlo approach to sampling from the known posterior distribution. Problems with hundreds of regressor variables become quite feasible. We give a simple method of assigning the hyperparameters of the prior distribution. The posterior predictive distribution is derived and the approach illustrated on compositional analysis of data involving three sugars with 160 near infrared absorbances as regressors.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (59)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00144
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:3:p:627-641
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().