Nonparametric estimation of the mode of a distribution of random curves
Th. Gasser,
P. Hall and
B. Presnell
Journal of the Royal Statistical Society Series B, 1998, vol. 60, issue 4, 681-691
Abstract:
Motivated by the need to develop meaningful empirical approximations to a ‘typical’ data value, we introduce methods for density and mode estimation when data are in the form of random curves. Our approach is based on finite dimensional approximations via generalized Fourier expansions on an empirically chosen basis. The mode estimation problem is reduced to a problem of kernel‐type multivariate estimation from vector data and is solved using a new recursive algorithm for finding the empirical mode. The algorithm may be used as an aid to the identification of clusters in a set of data curves. Bootstrap methods are employed to select the bandwidth.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00148
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:60:y:1998:i:4:p:681-691
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().