Fractal analysis of surface roughness by using spatial data
S. Davies and
P. Hall
Journal of the Royal Statistical Society Series B, 1999, vol. 61, issue 1, 3-37
Abstract:
We develop fractal methodology for data taking the form of surfaces. An advantage of fractal analysis is that it partitions roughness characteristics of a surface into a scale‐free component (fractal dimension) and properties that depend purely on scale. Particular emphasis is given to anisotropy where we show that, for many surfaces, the fractal dimension of line transects across a surface must either be constant in every direction or be constant in each direction except one. This virtual direction invariance of fractal dimension provides another canonical feature of fractal analysis, complementing its scale invariance properties and enhancing its attractiveness as a method for summarizing properties of roughness. The dependence of roughness on direction may be explained in terms of scale rather than dimension and can vary with orientation. Scale may be described by a smooth periodic function and may be estimated nonparametrically. Our results and techniques are applied to analyse data on the surfaces of soil and plastic food wrapping. For the soil data, interest centres on the effect of surface roughness on retention of rain‐water, and data are recorded as a series of digital images over time. Our analysis captures the way in which both the fractal dimension and the scale change with rainfall, or equivalently with time. The food wrapping data are on a much finer scale than the soil data and are particularly anisotropic. The analysis allows us to determine the manufacturing process which produces the smoothest wrapping, with least tendency for micro‐organisms to adhere.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00160
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:61:y:1999:i:1:p:3-37
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().