Multivariate boundary kernels and a continuous least squares principle
H. G. Müller and
U. Stadtmüller
Journal of the Royal Statistical Society Series B, 1999, vol. 61, issue 2, 439-458
Abstract:
Whereas there are many references on univariate boundary kernels, the construction of boundary kernels for multivariate density and curve estimation has not been investigated in detail. The use of multivariate boundary kernels ensures global consistency of multivariate kernel estimates as measured by the integrated mean‐squared error or sup‐norm deviation for functions with compact support. We develop a class of boundary kernels which work for any support, regardless of the complexity of its boundary. Our construction yields a boundary kernel for each point in the boundary region where the function is to be estimated. These boundary kernels provide a natural continuation of non‐negative kernels used in the interior onto the boundary. They are obtained as solutions of the same kernel‐generating variational problem which also produces the kernel function used in the interior as its solution. We discuss the numerical implementation of the proposed boundary kernels and their relationship to locally weighted least squares. Along the way we establish a continuous least squares principle and a continuous analogue of the Gauss–Markov theorem.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00186
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:61:y:1999:i:2:p:439-458
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().