The Covariance Inflation Criterion for Adaptive Model Selection
Robert Tibshirani and
Keith Knight
Journal of the Royal Statistical Society Series B, 1999, vol. 61, issue 3, 529-546
Abstract:
We propose a new criterion for model selection in prediction problems. The covariance inflation criterion adjusts the training error by the average covariance of the predictions and responses, when the prediction rule is applied to permuted versions of the data set. This criterion can be applied to general prediction problems (e.g. regression or classification) and to general prediction rules (e.g. stepwise regression, tree‐based models and neural nets). As a by‐product we obtain a measure of the effective number of parameters used by an adaptive procedure. We relate the covariance inflation criterion to other model selection procedures and illustrate its use in some regression and classification problems. We also revisit the conditional bootstrap approach to model selection.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00191
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:61:y:1999:i:3:p:529-546
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().