Bayesian analysis of agricultural field experiments
J. Besag and
D. Higdon
Journal of the Royal Statistical Society Series B, 1999, vol. 61, issue 4, 691-746
Abstract:
The paper describes Bayesian analysis for agricultural field experiments, a topic that has received very little previous attention, despite a vast frequentist literature. Adoption of the Bayesian paradigm simplifies the interpretation of the results, especially in ranking and selection. Also, complex formulations can be analysed with comparative ease, by using Markov chain Monte Carlo methods. A key ingredient in the approach is the need for spatial representations of the unobserved fertility patterns. This is discussed in detail. Problems caused by outliers and by jumps in fertility are tackled via hierarchical t formulations that may find use in other contexts. The paper includes three analyses of variety trials for yield and one example involving binary data; none is entirely straightforward. Some comparisons with frequentist analyses are made.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00201
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:61:y:1999:i:4:p:691-746
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().