Upper probabilities based only on the likelihood function
P. Walley and
S. Moral
Journal of the Royal Statistical Society Series B, 1999, vol. 61, issue 4, 831-847
Abstract:
In the problem of parametric statistical inference with a finite parameter space, we propose some simple rules for defining posterior upper and lower probabilities directly from the observed likelihood function, without using any prior information. The rules satisfy the likelihood principle and a basic consistency principle (‘avoiding sure loss’), they produce vacuous inferences when the likelihood function is constant, and they have other symmetry, monotonicity and continuity properties. One of the rules also satisfies fundamental frequentist principles. The rules can be used to eliminate nuisance parameters, and to interpret the likelihood function and to use it in making decisions. To compare the rules, they are applied to the problem of sampling from a finite population. Our results indicate that there are objective statistical methods which can reconcile three general approaches to statistical inference: likelihood inference, coherent inference and frequentist inference.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00205
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:61:y:1999:i:4:p:831-847
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().