EconPapers    
Economics at your fingertips  
 

Almost nonparametric inference for repeated measures in mixture models

T. P. Hettmansperger and Hoben Thomas

Journal of the Royal Statistical Society Series B, 2000, vol. 62, issue 4, 811-825

Abstract: We consider ways to estimate the mixing proportions in a finite mixture distribution or to estimate the number of components of the mixture distribution without making parametric assumptions about the component distributions. We require a vector of observations on each subject. This vector is mapped into a vector of 0s and 1s and summed. The resulting distribution of sums can be modelled as a mixture of binomials. We then work with the binomial mixture. The efficiency and robustness of this method are compared with the strategy of assuming multivariate normal mixtures when, typically, the true underlying mixture distribution is different. It is shown that in many cases the approach based on simple binomial mixtures is superior.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00266

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:62:y:2000:i:4:p:811-825

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:62:y:2000:i:4:p:811-825