EconPapers    
Economics at your fingertips  
 

Blur‐generated non‐separable space–time models

Patrick E. Brown, Gareth O. Roberts, Kjetil F. Kåresen and Stefano Tonellato ()

Journal of the Royal Statistical Society Series B, 2000, vol. 62, issue 4, 847-860

Abstract: Statistical space–time modelling has traditionally been concerned with separable covariance functions, meaning that the covariance function is a product of a purely temporal function and a purely spatial function. We draw attention to a physical dispersion model which could model phenomena such as the spread of an air pollutant. We show that this model has a non‐separable covariance function. The model is well suited to a wide range of realistic problems which will be poorly fitted by separable models. The model operates successively in time: the spatial field at time t +1 is obtained by ‘blurring’ the field at time t and adding a spatial random field. The model is first introduced at discrete time steps, and the limit is taken as the length of the time steps goes to 0. This gives a consistent continuous model with parameters that are interpretable in continuous space and independent of sampling intervals. Under certain conditions the blurring must be a Gaussian smoothing kernel. We also show that the model is generated by a stochastic differential equation which has been studied by several researchers previously.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00269

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:62:y:2000:i:4:p:847-860

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:62:y:2000:i:4:p:847-860