Non‐conjugate prior distribution assessment for multivariate normal sampling
Paul H. Garthwaite and
Shafeeqah A. Al‐Awadhi
Journal of the Royal Statistical Society Series B, 2001, vol. 63, issue 1, 95-110
Abstract:
Elicitation methods are proposed for quantifying expert opinion about a multivariate normal sampling model. The natural conjugate prior family imposes a relationship between the mean vector and the covariance matrix that can portray an expert's opinion poorly. Instead we assume that opinions about the mean and the covariance are independent and suggest innovative forms of question which enable the expert to quantify separately his or her opinion about each of these parameters. Prior opinion about the mean vector is modelled by a multivariate normal distribution and about the covariance matrix by both an inverse Wishart distribution and a generalized inverse‐Wishart (GIW) distribution. To construct the latter, results are developed that give insight into the GIW parameters and their interrelationships. Certain of the elicitation methods exploit unconditional assessments as fully as possible, since these can reflect an expert's beliefs more accurately than conditional assessments. Methods are illustrated through an example.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00278
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:63:y:2001:i:1:p:95-110
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().