Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation
Ming Gao Gu and
Hong‐Tu Zhu
Journal of the Royal Statistical Society Series B, 2001, vol. 63, issue 2, 339-355
Abstract:
We propose a two‐stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off‐line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (22)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00289
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:63:y:2001:i:2:p:339-355
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().