Estimating the structural dimension of regressions via parametric inverse regression
Efstathia Bura and
R. Dennis Cook
Journal of the Royal Statistical Society Series B, 2001, vol. 63, issue 2, 393-410
Abstract:
A new estimation method for the dimension of a regression at the outset of an analysis is proposed. A linear subspace spanned by projections of the regressor vector X, which contains part or all of the modelling information for the regression of a vector Y on X, and its dimension are estimated via the means of parametric inverse regression. Smooth parametric curves are fitted to the p inverse regressions via a multivariate linear model. No restrictions are placed on the distribution of the regressors. The estimate of the dimension of the regression is based on optimal estimation procedures. A simulation study shows the method to be more powerful than sliced inverse regression in some situations.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00292
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:63:y:2001:i:2:p:393-410
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().