A risk set calibration method for failure time regression by using a covariate reliability sample
Sharon X. Xie,
C. Y. Wang and
Ross L. Prentice
Journal of the Royal Statistical Society Series B, 2001, vol. 63, issue 4, 855-870
Abstract:
Regression parameter estimation in the Cox failure time model is considered when regression variables are subject to measurement error. Assuming that repeat regression vector measurements adhere to a classical measurement model, we can consider an ordinary regression calibration approach in which the unobserved covariates are replaced by an estimate of their conditional expectation given available covariate measurements. However, since the rate of withdrawal from the risk set across the time axis, due to failure or censoring, will typically depend on covariates, we may improve the regression parameter estimator by recalibrating within each risk set. The asymptotic and small sample properties of such a risk set regression calibration estimator are studied. A simple estimator based on a least squares calibration in each risk set appears able to eliminate much of the bias that attends the ordinary regression calibration estimator under extreme measurement error circumstances. Corresponding asymptotic distribution theory is developed, small sample properties are studied using computer simulations and an illustration is provided.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00317
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:63:y:2001:i:4:p:855-870
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().