Local sensitivity approximations for selectivity bias
John Copas and
Shinto Eguchi
Journal of the Royal Statistical Society Series B, 2001, vol. 63, issue 4, 871-895
Abstract:
Observational data analysis is often based on tacit assumptions of ignorability or randomness. The paper develops a general approach to local sensitivity analysis for selectivity bias, which aims to study the sensitivity of inference to small departures from such assumptions. If M is a model assuming ignorability, we surround M by a small neighbourhood N defined in the sense of Kullback–Leibler divergence and then compare the inference for models in N with that for M. Interpretable bounds for such differences are developed. Applications to missing data and to observational comparisons are discussed. Local approximations to sensitivity analysis are model robust and can be applied to a wide range of statistical problems.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00318
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:63:y:2001:i:4:p:871-895
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().