EconPapers    
Economics at your fingertips  
 

Local sensitivity approximations for selectivity bias

John Copas and Shinto Eguchi

Journal of the Royal Statistical Society Series B, 2001, vol. 63, issue 4, 871-895

Abstract: Observational data analysis is often based on tacit assumptions of ignorability or randomness. The paper develops a general approach to local sensitivity analysis for selectivity bias, which aims to study the sensitivity of inference to small departures from such assumptions. If M is a model assuming ignorability, we surround M by a small neighbourhood N defined in the sense of Kullback–Leibler divergence and then compare the inference for models in N with that for M. Interpretable bounds for such differences are developed. Applications to missing data and to observational comparisons are discussed. Local approximations to sensitivity analysis are model robust and can be applied to a wide range of statistical problems.

Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00318

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:63:y:2001:i:4:p:871-895

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:63:y:2001:i:4:p:871-895