Dimension reduction for the conditional kth moment in regression
Xiangrong Yin and
R. Dennis Cook
Journal of the Royal Statistical Society Series B, 2002, vol. 64, issue 2, 159-175
Abstract:
The idea of dimension reduction without loss of information can be quite helpful for guiding the construction of summary plots in regression without requiring a prespecified model. Central subspaces are designed to capture all the information for the regression and to provide a population structure for dimension reduction. Here, we introduce the central kth‐moment subspace to capture information from the mean, variance and so on up to the kth conditional moment of the regression. New methods are studied for estimating these subspaces. Connections with sliced inverse regression are established, and examples illustrating the theory are presented.
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (35)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00330
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:64:y:2002:i:2:p:159-175
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().