EconPapers    
Economics at your fingertips  
 

Approximate likelihood methods for estimating local recombination rates

Paul Fearnhead and Peter Donnelly

Journal of the Royal Statistical Society Series B, 2002, vol. 64, issue 4, 657-680

Abstract: Summary. There is currently great interest in understanding the way in which recombination rates vary, over short scales, across the human genome. Aside from inherent interest, an understanding of this local variation is essential for the sensible design and analysis of many studies aimed at elucidating the genetic basis of common diseases or of human population histories. Standard pedigree‐based approaches do not have the fine scale resolution that is needed to address this issue. In contrast, samples of deoxyribonucleic acid sequences from unrelated chromosomes in the population carry relevant information, but inference from such data is extremely challenging. Although there has been much recent interest in the development of full likelihood inference methods for estimating local recombination rates from such data, they are not currently practicable for data sets of the size being generated by modern experimental techniques. We introduce and study two approximate likelihood methods. The first, a marginal likelihood, ignores some of the data. A careful choice of what to ignore results in substantial computational savings with virtually no loss of relevant information. For larger sequences, we introduce a ‘composite’ likelihood, which approximates the model of interest by ignoring certain long‐range dependences. An informal asymptotic analysis and a simulation study suggest that inference based on the composite likelihood is practicable and performs well. We combine both methods to reanalyse data from the lipoprotein lipase gene, and the results seriously question conclusions from some earlier studies of these data.

Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00355

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:64:y:2002:i:4:p:657-680

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:657-680