EconPapers    
Economics at your fingertips  
 

Inference in smoothing spline analysis of variance

Wensheng Guo

Journal of the Royal Statistical Society Series B, 2002, vol. 64, issue 4, 887-898

Abstract: Summary. Smoothing spline analysis of variance decomposes a multivariate function into additive components. This decomposition not only provides an efficient way to model a multivariate function but also leads to meaningful inference by testing whether a certain component equals 0. No formal procedure is yet available to test such a hypothesis. We propose an asymptotic method based on the likelihood ratio to test whether a functional component is 0. This test allows us to choose an optimal model and to compare groups of curves. We first develop the general theory by exploiting the connection between mixed effects models and smoothing splines. We then apply this to compare two groups of curves and to select an optimal model in a two‐dimensional problem. A small simulation is used to assess the finite sample performance of the likelihood ratio test.

Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00367

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:64:y:2002:i:4:p:887-898

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:887-898