Estimating the association parameter for copula models under dependent censoring
Weijing Wang
Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 1, 257-273
Abstract:
Summary. Many biomedical studies involve the analysis of multiple events. The dependence between the times to these end points is often of scientific interest. We investigate a situation when one end point is subject to censoring by the other. The model assumptions of Day and co‐workers and Fine and co‐workers are extended to more general structures where the level of association may vary with time. Two types of estimating function are proposed. Asymptotic properties of the proposed estimators are derived. Their finite sample performance is studied via simulations. The inference procedures are applied to two real data sets for illustration.
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00385
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:1:p:257-273
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().