Pattern–mixture and selection models for analysing longitudinal data with monotone missing patterns
Jolene Birmingham,
Andrea Rotnitzky and
Garrett M. Fitzmaurice
Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 1, 275-297
Abstract:
Summary. We examine three pattern–mixture models for making inference about parameters of the distribution of an outcome of interest Y that is to be measured at the end of a longitudinal study when this outcome is missing in some subjects. We show that these pattern–mixture models also have an interpretation as selection models. Because these models make unverifiable assumptions, we recommend that inference about the distribution of Y be repeated under a range of plausible assumptions. We argue that, of the three models considered, only one admits a parameterization that facilitates the examination of departures from the assumption of sequential ignorability. The three models are nonparametric in the sense that they do not impose restrictions on the class of observed data distributions. Owing to the curse of dimensionality, the assumptions that are encoded in these models are sufficient for identification but not for inference. We describe additional flexible and easily interpretable assumptions under which it is possible to construct estimators that are well behaved with moderate sample sizes. These assumptions define semiparametric models for the distribution of the observed data. We describe a class of estimators which, up to asymptotic equivalence, comprise all the consistent and asymptotically normal estimators of the parameters of interest under the postulated semiparametric models. We illustrate our methods with the analysis of data from a randomized clinical trial of contracepting women.
Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00386
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:1:p:275-297
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().