EconPapers    
Economics at your fingertips  
 

Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions

Richard Royall and Tsung‐Shan Tsou

Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 2, 391-404

Abstract: Summary. The strength of statistical evidence is measured by the likelihood ratio. Two key performance properties of this measure are the probability of observing strong misleading evidence and the probability of observing weak evidence. For the likelihood function associated with a parametric statistical model, these probabilities have a simple large sample structure when the model is correct. Here we examine how that structure changes when the model fails. This leads to criteria for determining whether a given likelihood function is robust (continuing to perform satisfactorily when the model fails), and to a simple technique for adjusting both likelihoods and profile likelihoods to make them robust. We prove that the expected information in the robust adjusted likelihood cannot exceed the expected information in the likelihood function from a true model. We note that the robust adjusted likelihood is asymptotically fully efficient when the working model is correct, and we show that in some important examples this efficiency is retained even when the working model fails. In such cases the Bayes posterior probability distribution based on the adjusted likelihood is robust, remaining correct asymptotically even when the model for the observable random variable does not include the true distribution. Finally we note a link to standard frequentist methodology—in large samples the adjusted likelihood functions provide robust likelihood‐based confidence intervals.

Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00392

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:2:p:391-404

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:65:y:2003:i:2:p:391-404