EconPapers    
Economics at your fingertips  
 

Bayesian clustering and product partition models

Fernando A. Quintana and Pilar L. Iglesias

Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 2, 557-574

Abstract: Summary. We present a decision theoretic formulation of product partition models (PPMs) that allows a formal treatment of different decision problems such as estimation or hypothesis testing and clustering methods simultaneously. A key observation in our construction is the fact that PPMs can be formulated in the context of model selection. The underlying partition structure in these models is closely related to that arising in connection with Dirichlet processes. This allows a straightforward adaptation of some computational strategies—originally devised for nonparametric Bayesian problems—to our framework. The resulting algorithms are more flexible than other competing alternatives that are used for problems involving PPMs. We propose an algorithm that yields Bayes estimates of the quantities of interest and the groups of experimental units. We explore the application of our methods to the detection of outliers in normal and Student t regression models, with clustering structure equivalent to that induced by a Dirichlet process prior. We also discuss the sensitivity of the results considering different prior distributions for the partitions.

Date: 2003
References: View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00402

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:2:p:557-574

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:65:y:2003:i:2:p:557-574