EconPapers    
Economics at your fingertips  
 

Bayesian inversion of geoelectrical resistivity data

Kim E. Andersen, Stephen P. Brooks and Martin B. Hansen

Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 3, 619-642

Abstract: Summary. Enormous quantities of geoelectrical data are produced daily and often used for large scale reservoir modelling. To interpret these data requires reliable and efficient inversion methods which adequately incorporate prior information and use realistically complex modelling structures. We use models based on random coloured polygonal graphs as a powerful and flexible modelling framework for the layered composition of the Earth and we contrast our approach with earlier methods based on smooth Gaussian fields. We demonstrate how the reconstruction algorithm may be efficiently implemented through the use of multigrid Metropolis–coupled Markov chain Monte Carlo methods and illustrate the method on a set of field data.

Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00406

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:3:p:619-642

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:619-642