Estimation of dependence between paired correlated failure times in the presence of covariate measurement error
Malka Gorfine,
Li Hsu and
Ross L. Prentice
Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 3, 643-661
Abstract:
Summary. In many biomedical studies, covariates are subject to measurement error. Although it is well known that the regression coefficients estimators can be substantially biased if the measurement error is not accommodated, there has been little study of the effect of covariate measurement error on the estimation of the dependence between bivariate failure times. We show that the dependence parameter estimator in the Clayton–Oakes model can be considerably biased if the measurement error in the covariate is not accommodated. In contrast with the typical bias towards the null for marginal regression coefficients, the dependence parameter can be biased in either direction. We introduce a bias reduction technique for the bivariate survival function in copula models while assuming an additive measurement error model and replicated measurement for the covariates, and we study the large and small sample properties of the dependence parameter estimator proposed.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00407
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:3:p:643-661
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().