Efficient design of experiments in the Monod model
Holger Dette,
Viatcheslav B. Melas,
Andrey Pepelyshev and
Nikolai Strigul
Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 3, 725-742
Abstract:
Summary. Estimation and experimental design in a non‐linear regression model that is used in microbiology are studied. The Monod model is defined implicitly by a differential equation and has numerous applications in microbial growth kinetics, water research, pharmacokinetics and plant physiology. It is proved that least squares estimates are asymptotically unbiased and normally distributed. The asymptotic covariance matrix of the estimator is the basis for the construction of efficient designs of experiments. In particular locally D‐, E‐ and c‐optimal designs are determined and their properties are studied theoretically and by simulation. If certain intervals for the non‐linear parameters can be specified, locally optimal designs can be constructed which are robust with respect to a misspecification of the initial parameters and which allow efficient parameter estimation. Parameter variances can be decreased by a factor of 2 by simply sampling at optimal times during the experiment.
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/1467-9868.00412
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:3:p:725-742
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().