EconPapers    
Economics at your fingertips  
 

Efficient design of experiments in the Monod model

Holger Dette, Viatcheslav B. Melas, Andrey Pepelyshev and Nikolai Strigul

Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 3, 725-742

Abstract: Summary. Estimation and experimental design in a non‐linear regression model that is used in microbiology are studied. The Monod model is defined implicitly by a differential equation and has numerous applications in microbial growth kinetics, water research, pharmacokinetics and plant physiology. It is proved that least squares estimates are asymptotically unbiased and normally distributed. The asymptotic covariance matrix of the estimator is the basis for the construction of efficient designs of experiments. In particular locally D‐, E‐ and c‐optimal designs are determined and their properties are studied theoretically and by simulation. If certain intervals for the non‐linear parameters can be specified, locally optimal designs can be constructed which are robust with respect to a misspecification of the initial parameters and which allow efficient parameter estimation. Parameter variances can be decreased by a factor of 2 by simply sampling at optimal times during the experiment.

Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00412

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:3:p:725-742

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:725-742