EconPapers    
Economics at your fingertips  
 

Accommodating stochastic departures from percentile invariance in causal models

Kevin K. Dobbin and Thomas A. Louis

Journal of the Royal Statistical Society Series B, 2003, vol. 65, issue 4, 837-849

Abstract: Summary. Consider a clinical trial in which participants are randomized to a single‐dose treatment or a placebo control and assume that the adherence level is accurately recorded. If the treatment is effective, then good adherers in the treatment group should do better than poor ad‐ herers because they received more drug; the treatment group data follow a dose–response curve. But, good adherers to the placebo often do better than poor adherers, so the observed adherence–response in the treatment group cannot be completely attributed to the treatment. Efron and Feldman proposed an adjustment to the observed adherence–response in the treatment group by using the adherence–response in the control group. It relies on a percentile invariance assumption under which each participant's adherence percentile within their assigned treatment group does not depend on the assigned group (active drug or placebo). The Efron and Feldman approach is valid under percentile invariance, but not necessarily under departures from it. We propose an analysis based on a generalization of percentile invariance that allows adherence percentiles to be stochastically permuted across treatment groups, using a broad class of stochastic permutation models. We show that approximate maximum likelihood estimates of the underlying dose–response curve perform well when the stochastic permutation process is correctly specified and are quite robust to model misspecification.

Date: 2003
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/1467-9868.00418

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:65:y:2003:i:4:p:837-849

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:65:y:2003:i:4:p:837-849