EconPapers    
Economics at your fingertips  
 

Recurrent events analysis in the presence of time‐dependent covariates and dependent censoring

Maja Miloslavsky, Sündüz Keleş, Mark J. van der Laan and Steve Butler

Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 1, 239-257

Abstract: Summary. Recurrent events models have had considerable attention recently. The majority of approaches show the consistency of parameter estimates under the assumption that censoring is independent of the recurrent events process of interest conditional on the covariates that are included in the model. We provide an overview of available recurrent events analysis methods and present an inverse probability of censoring weighted estimator for the regression parameters in the Andersen–Gill model that is commonly used for recurrent event analysis. This estimator remains consistent under informative censoring if the censoring mechanism is estimated consistently, and it generally improves on the naïve estimator for the Andersen–Gill model in the case of independent censoring. We illustrate the bias of ad hoc estimators in the presence of informative censoring with a simulation study and provide a data analysis of recurrent lung exacerbations in cystic fibrosis patients when some patients are lost to follow‐up.

Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2004.00442.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:1:p:239-257

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:66:y:2004:i:1:p:239-257