Composite conditional likelihood for sparse clustered data
John J. Hanfelt
Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 1, 259-273
Abstract:
Summary. Sparse clustered data arise in finely stratified genetic and epidemiologic studies and pose at least two challenges to inference. First, it is difficult to model and interpret the full joint probability of dependent discrete data, which limits the utility of full likelihood methods. Second, standard methods for clustered data, such as pairwise likelihood and the generalized estimating function approach, are unsuitable when the data are sparse owing to the presence of many nuisance parameters. We present a composite conditional likelihood for use with sparse clustered data that provides valid inferences about covariate effects on both the marginal response probabilities and the intracluster pairwise association. Our primary focus is on sparse clustered binary data, in which case the method proposed utilizes doubly discordant quadruplets drawn from each stratum to conduct inference about the intracluster pairwise odds ratios.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1046/j.1369-7412.2003.05300.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:1:p:259-273
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().