Identification of non‐linear additive autoregressive models
Jianhua Z. Huang and
Lijian Yang
Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 2, 463-477
Abstract:
Summary. We propose a lag selection method for non‐linear additive autoregressive models that is based on spline estimation and the Bayes information criterion. The additive structure of the autoregression function is used to overcome the ‘curse of dimensionality’, whereas the spline estimators effectively take into account such a structure in estimation. A stepwise procedure is suggested to implement the method proposed. A comprehensive Monte Carlo study demonstrates good performance of the method proposed and a substantial computational advantage over existing local‐polynomial‐based methods. Consistency of the lag selection method based on the Bayes information criterion is established under the assumption that the observations are from a stochastic process that is strictly stationary and strongly mixing, which provides the first theoretical result of this kind for spline smoothing of weakly dependent data.
Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
https://doi.org/10.1111/j.1369-7412.2004.05500.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:2:p:463-477
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868
Access Statistics for this article
Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom
More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().