EconPapers    
Economics at your fingertips  
 

Wavelet deconvolution in a periodic setting

Iain M. Johnstone, Gérard Kerkyacharian, Dominique Picard and Marc Raimondo

Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 3, 547-573

Abstract: Summary. Deconvolution problems are naturally represented in the Fourier domain, whereas thresholding in wavelet bases is known to have broad adaptivity properties. We study a method which combines both fast Fourier and fast wavelet transforms and can recover a blurred function observed in white noise with O{n log (n)2} steps. In the periodic setting, the method applies to most deconvolution problems, including certain ‘boxcar’ kernels, which are important as a model of motion blur, but having poor Fourier characteristics. Asymptotic theory informs the choice of tuning parameters and yields adaptivity properties for the method over a wide class of measures of error and classes of function. The method is tested on simulated light detection and ranging data suggested by underwater remote sensing. Both visual and numerical results show an improvement over competing approaches. Finally, the theory behind our estimation paradigm gives a complete characterization of the ‘maxiset’ of the method: the set of functions where the method attains a near optimal rate of convergence for a variety of Lp loss functions.

Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2004.02056.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:3:p:547-573

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:66:y:2004:i:3:p:547-573