EconPapers    
Economics at your fingertips  
 

Joint response graphs and separation induced by triangular systems

Nanny Wermuth and D. R. Cox

Journal of the Royal Statistical Society Series B, 2004, vol. 66, issue 3, 687-717

Abstract: Summary. We consider joint probability distributions generated recursively in terms of univariate conditional distributions satisfying conditional independence restrictions. The independences are captured by missing edges in a directed graph. A matrix form of such a graph, called the generating edge matrix, is triangular so the distributions that are generated over such graphs are called triangular systems. We study consequences of triangular systems after grouping or reordering of the variables for analyses as chain graph models, i.e. for alternative recursive factorizations of the given density using joint conditional distributions. For this we introduce families of linear triangular equations which do not require assumptions of distributional form. The strength of the associations that are implied by such linear families for chain graph models is derived. The edge matrices of chain graphs that are implied by any triangular system are obtained by appropriately transforming the generating edge matrix. It is shown how induced independences and dependences can be studied by graphs, by edge matrix calculations and via the properties of densities. Some ways of using the results are illustrated.

Date: 2004
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1111/j.1467-9868.2004.b5161.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssb:v:66:y:2004:i:3:p:687-717

Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-9868

Access Statistics for this article

Journal of the Royal Statistical Society Series B is currently edited by P. Fryzlewicz and I. Van Keilegom

More articles in Journal of the Royal Statistical Society Series B from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:jorssb:v:66:y:2004:i:3:p:687-717